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Summary of Accomplishments

Computing systems for managing critical infrastructures must tolerate fail-
ures and be resistant to attack. This project has explored techniques for
building such survivable critical-infrastructure systems. Mechanisms were
developed for ensuring integrity of hosts that execute mobile code and for
ensuring fault-tolerance of computations that are structured in terms of mo-
bile code. We also explored automated techniques for analyzing the fault-
tolerance of distributed systems. And, finally, we initiated a research pro-
gram into security policy enforcement, by both characterizing what policies
are enforceable and devising new object-code rewriting methods for security
policy enforcement.

A list of the publications produced by the project appears as the final
section of this report. Included among those 22 publications are two books—
a graduate level monograph on reasoning about concurrent programs and a
now widely-cited National Research Council volume on information systems
trustworthiness. Also, two patents in the area of fault-tolerance were granted
to the principal investigator and his industrial collaborators.




Detailed Description of Technical Progress

Agent Integrity

Agents comprising an application must not only survive (possibly malicious)
failures of the hosts they visit, but they must also be resilient to hostile ac-
tions by other hosts. Replication and voting enable an application to survive
some failures of the hosts it visits. Hosts that are not visited by agents of the
application, however, can masquerade and confound a replication scheme.
Two classes of protocols to solve these agent integrity problems were de-
veloped as part of this project [1,9]. One class uses chained cryptographic
certificates; the second class uses cryptographic signature-sharing. We were
then able to unify these protocols by viewing them in terms of delegation.
In each, the principals are sets of hosts (services) and authorization is trans-
ferred from one principal to another.

In some settings, hosts being visited by agents cannot be replicated, so
the preceding protocols do not apply. This led us to investigate protocols for
agent fault-tolerance without host replication.! With these NAP protocols,
execution of an agent A on a host is monitored by agents (napping) on other
hosts [20]. If the failure of A or of the host on which A executes is detected,
then one of the napping agents performs a recovery action. This recovery
action might involve retrying A, dispatching a different agent to some other
host, or alerting the computation’s initiator of a problem. NAP is not resilient
to hostile host failures, but without using replication no scheme can be.

The difficult part of implementing NAP involves coordinating the napping
agents. A protocol that tolerates multiple failures must have multiple agents
napping, each monitoring execution. A coordination protocol is required
to ensure that more than one napping agents does not detect and try to
restart a failed agent. Our initial solutions to the coordination problem were
complex enough that their correctness was suspect. This led us to show that
the problem was actually an instance of the (fail-stop) reliable broadcast
problem that we solved in 1983. And, by refining our 1983 protocol, we
were able to support a broad class of strategies for how napping agents are
disbursed in the network. This broader class of strategies allows our protocols
also to work when the trajectory of an agent folds back on itself, visiting a
host that is still running a napping agent.

1This work is joint with Dag Johansen at the University of Tromsoe (Norway) and
Keith Marzullo at the Univ of California, San Diego.
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Analysis of system fault-tolerance

Ad hoc reasoning about fault tolerance is unsatisfactory for large, critical-
infrastructure systems. Only rigorous analysis with mechanized support can
give the needed confidence; only a tool that is usable by system designers can
have a real impact. Therefore, we continued our investigations (jointly with
Scott Stoller) into a new verification framework that is specialized to fault tol-
erance [4,13]. The framework, which is based on a stream-processing model of
computation, permits more natural specifications of fault-tolerance require-
ments than general-purpose formalisms and supports mechanized analysis of
system fault-tolerance.

In stream-processing models, each component of a system is represented
by an input-output function describing its behavior. For simplicity, processes
are assumed to communicate only by messages transmitted along unbounded
FIFO channels. Behaviors of a system can be determined from input-output
functions describing the system’s components by doing a fixed-point calcu-
lation. This provides a clean algorithmic basis for our analysis. Each input-
output function encapsulates the implementation of a component, enabling
a convenient separation of local and global analyses. Local analysis verifies
independently for each component that the proposed input-output function
faithfully represents its behavior. Global analysis, in the form of the fixed-
point calculation, determines the system’s behavior from the input-output
functions.

The fixed-point calculation produces a graph, called a message flow graph,
representing possible communication behaviors of the system. Each node of
the graph corresponds to a component, and each edge is labeled with a
description of the sequence of messages sent from: the source node to the
target node. Exact computation of all possible sequences of messages that
might be sent is generally infeasible. So, to help make automated analysis
feasible, our framework supports flexible and powerful approximations, or
abstractions, as they are called in the literature on abstract interpretation.
Traditionally, stream-processing models have not incorporated approxima-
tions. The approximations in our framework enable compact representation
of the highly non-deterministic behavior characteristic of severe failures and
also support abstraction from irrelevant aspects of a system’s failure-free be-
havior. The latter reflects a separation of concerns that is crucial for making
the fault-tolerance analysis tractable.

We use only conservative approximations, so the analysis never falsely




implies that a system satisfies its fault-tolerance requirement. But approxi-
mations do introduce the possibility of false negatives: the analysis might not
establish that a system satisfies its fault-tolerance requirement, even though
it does.

A common approach to modeling failures is to treat them as events that
occur non-deterministically during a computation, thereby making it diffi-
cult to separate the effects of failures from other aspects of the system’s
behavior and, consequently, to model the former more finely than the lat-
ter. In particular, one often wants to avoid case analysis corresponding to
non-determinism in a system’s failure-free behavior, while case analysis corre-
sponding to different combinations of failures appears unavoidable in general
in automated analysis of fault-tolerance. A failure scenario for a system is an
assignment of component failures to a subset of the system’s components. In
our approach, each input-output function is parameterized by possible fail-
ures in the corresponding component; system behavior is analyzed separately
for each failure scenario of interest.

In our framework, possible communications (in a given failure scenario)
between two components are characterized by approximations of values (the
data transmitted in messages), multiplicities (the number of times each value
is sent), and message orderings (the order in which values are sent). Values
and multiplicities are approximated using a form of abstract interpretation
and a form of symbolic computation. Message orderings are approximated
using partial (instead of total) orders.

Our analysis method was implemented in a prototype tool called CRAFT.
And we have used CRAFT to analyze our protocols for agent integrity and
the Oral Messages algorithm for Byzantine Agreement.

Enforceable Security Policies

A security policy defines executions that, for one reason or another, have been
deemed unacceptable. To date, application-independent security policies—
like mandatory and discretionary access control, information flow restrictions,
and resource availability—have attracted most of the attention. But with
the expanding role of computers in our infrastructure, specialized, appli-
cation-dependent security policies are becoming increasingly important. For
example, a system to support mobile code might prevent information leakage
by enforcing a security policy that bars messages from being sent after files
are read. To support electronic commerce, a security policy might prohibit

4




executions in which a customer pays for a service but the seller does not
provide that service.

Over the period of this grant, we developed a mathematical character-
ization of what security policies are enforceable [9]. First, we proved that
enforcement mechanisms cannot exist for security policies that are not safety
properties. Second, we developed a new class of enforcement mechanisms
and proved that it is complete for the set of all enforceable security policies
[22]. Our new class of mechanisms is based on security automata, automata
that accept finite and infinite sequences.

A security automaton serves as an enforcement mechanism for some target
system by monitoring and controlling the execution of that system. Each
action or new state corresponding to a next step that the target system
takes is sent to the security automaton and serves as the next symbol of
that automaton’s input. If the automaton cannot make a transition on an
input symbol, then the target system is about to violate the security policy
specified by the automation, and the target system is terminated.

We demonstrated the practicality of enforcing security policies expressed
using security automata by constructing and evaluating tools to generate
inlined reference monitors that implement security automata for both the
Java Virtual Machine and Intel x86 machines. The first prototype (SASI)
worked for programs written or compiled into Java virtual machine code
(JVML) or Intel’s x86 machine code; a second generation (PoET/PSLang)
refined the approach for JVML. Specifically, given a security automaton SA
that expresses a security policy and given a machine language program P,
both SASI and PoET/PSLang add checks to P that are necessary in order
to ensure that executing P is guaranteed not to violate the security policy
defined by SA. In addition, using standard compiler analyses, our prototypes
attempt to minimize the number of checks inserted.

Using SASI, we experimented with generalizations of two well known se-
curity policies: software fault isolation (SFI) and the Java Standard Security
Manager. Our experiments confirmed that SASI generates code comparable
with hand-coded, heavily optimized SFI tools for the x86, and in fact ex-
ceeds the performance of the hand-coded Java Standard Security Manager.
Furthermore, security automaton specifications of the security policies have
proven to be easy to write, understand, and modify. Using PoET/PSLang,
we showed how to support the Java 2 “stack inspection” security policy with-
out any support from the Java virtual machine. This, for example, allows
Java, 2 programs to be executed on previous generations of the Java run-time
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system; it also allows deployment of variations and refinements of the Java
security policy.
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